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TECHNICAL NOTE 3875

.

THE SIMIWUTY RU13S FCR SECOND-ORDER

SUBSONIC AND SUPERSONIC!FLOW

By Milton D. Vea Dyke

The similarity rules for linearized compressible flaw theory
(G6thert’s rule and its supersonic counterpart) are extended to second
order. It is shown that S?XYsecond-order subsonic flm C= be related
to %early incompressible” >1OW past the same
calculated by the Janzen-Rayleigh method.

INTRODUCTION

body, which can be

.

w

The linearized small-disturbance theory of steady compressible flow,
based on the Prandtl-Glauert equation, yields a first approximation for
thin objects moving at either subsonic or supersonic speeds. More pre-
cisely, it provides the first term in an asymptotic expansion of the
solution for small disturbances, provided that the flight Mach nmber
is not too close either to unity (transonic flow) or to infinity
(hypersonic flow).

The similarity rule that governs linearized subsonic flow past
general three-dimensional objects was first given correctly by G6thert
(ref. 1). It has an obvious counterpart in supersonic flow, and the
rules have rendered great service in both theoretical and experhental
investigations.

Recently, various investigators have sought to improve on the line-
arized theory by finding higher approximations (see, e.g., refs. 2 to 5).
The second step is comnonly referred to as the second-order smsXL-
disturbance theory, or simply “second-order theory.” It can be found
in general by iterating upon the linearized solution, retaining all terms
out of the full nonlinear equations of motion whose contribution is of
the order of the square of the disturbances in linearized theory (ref. 3).
In the simplest case of plane flow without stagnation points, the line-
arized disturbances are proportional to the thiclmess ratio T of the
airfoil, so that second-order theory adds terms in T2, and higher
approximations extend the series in powers of ~. Stagnation points
lead to the appearance of logarithmic terms, begfmingwith +Zn T ti
the fourth approximation. The series diverges in the immediate vicinity
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of stagnation points, although it
niques (ref. 6). Slender pointed

1

can be corrected
objects, such as

:
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*
there by simple tech-
a smooth body of —

revolution, cause smaller disturbances than airfoils, but logarithmic “
terms always arise at the outset; hence t$e linearized solution contains
terms in T=Zn T and T2, and the second-o~detiincrement then consists of
t~ ill .T4h12T, @hl T, and T4. Nothing i8 knuwn of the convergence
of these seriesj they are permps only asymptotic expansions for small
thickness. Second-order theory, like lin&rized theory, breaks down in
the transonic and hypersonic ranges, though it may penetrate somewhat
farther into their fringes.

A similarity rule for second-order theory has recently been given in
the special case of supersonic flow past +hin flat wings by Fenain and
Germain, who demonstrate its usefulness in theoretical studies (ref. 5).
However, as in linearized theory, the rul& for flat wings are only
special cases of those for general three-dimensional shapes. The present
paper is devoted to deducing the general @les for subsonic and supersonic
flows, and examining their @lications. In particular, i% is shown hti
the rule for subsonic flow relates the second-order solution for any
object to nearly incompressible fluw past”the same body, which can be
calculated by the Janzen-Rayleigh method.: ‘

—

—.—

=
--
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a
DERIVATION OF RULES FOR BODIES OF REVOLUTION

“

A body of revolution is the simplest;shape that is not a special
case, but Msplays the full generality of the existing similarity rules”
for subsonic, supersonic, transonic, smd @ersonic flows. The sane can
be shown to be true of the second-order rples to he “discussedhere.
Hence for clarity of exposition, the secotid-orderrules will be derived
in detail only for an axisymmetric body at zero angle of attack. The
rules for general three-dimensional thin or slender objects will there-
after be stated without proof. The subsonic ‘andsupersonic cases are
so similsr that they can be treated sbmltaneously;

Let the bodybe described by r = TR(x), where T is a thickness
parsmeter or characteristic slope (say, ~he maximum slope, average slope,

thickness ratio, or the like), and
r

t

R(x) is a function of order unity
(sketch (a)). As usual in similarity

I anal@is, the characteristic slope T
is regarded as a parameter, so that

uao~ different values of T correspond to
-—.— .—- X affitie~yrelated members of the same

fsmily of bodies.

To second order the flow is
Sketch (a).- Notation for irro ational, so that there exists

body of revolution. 1a ve,ociiy pot&tial @(x,r;M,Y,T).

—
.
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This notation indicates that for each family of bodies (associated with
a given function R(x)), the flow field is regarded as depending not only
upon the two independent variables x and r but also upon the three
parameters follbg the semicolon:

M free-stream Mach number

7 adiabatic exponent of gasl

T characteristic slope of body

The aim of a similarity analysis is to transform the problem so as
to reduce the muiber of parameters appearing in it. If that can be
accomplished, flows having different values of the original parameters
are related provided only that the reduced parameters are equal. The
transformation to be used here consists in separating the dependent vari-
able @ into several components, md then stretching each component and
the independent variables by factors that depend upon the original param-
eters. It is convenient, and involves no loss of generality, to leave
stresmwise coordinates unchanged, so that r is to be stretched but
not x.

Perturbation potentials are first introducedby sett$ng

@—=
Um

x+@+(p+. . . (1)

where @. is the potential of linearized theory, and cp the second-order
incrment.

Rules for Linearized Theory

The linearized problem is

❑ # -(1- M2)@n+@rr +$=0

#*o at infinity

1

(2)

& = TR1 (x) atr= TR(x)

%ayes has potited out (ref. 7) that to second order an brperfect
gas corresponds to a polytropic gas having a 7 equal to the free-
stream value of

where c is the speed.of sound and p the demsity, the partial
derivative being taken at constmt entropy s.
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The first relation is the linearized PraQdtl-Gl.auertequation. The
.

second is a statement, sufficiently defi?iitefor present Imrposesl of
the requirement that the flow approach a~unifmm stresm far from the body

~—.

in almost all directions. The third is the linearized condition of tan-
gent flow at the body surface.2
involve 7, so that the solution
M and T.

The similarity rules can be
transformations of @ and r. It

The lin~ari~ed problem is seen not to ““
—

depends!up~n only the two parameters —

obtaine~ by considering a?bitrary scale
is readily found that the only choice

that reduces the rium%erof parameters frbm-two to one is (temporarily
suppressing the dependence on parameters)

@(x,r) = -$F@,P) (3)

and

P = pr (3) ‘

Then the problem becomes

for

for

Sljbsonicflow

stipe~onic flow

L :-.–

0

F+O at infinity
‘1

*
(3C)

b—

(4)

where here and later the upper ma l~er S}P aPPIY~ resPectfvelY~ to
the subsonic and supersonic problems. , ._

The transformations of @ and r Wve:been so chosen that the
problan is reduced to one involving the!twLpa.rmeters M and T not: ~- —.

21n what is generally called the siender-body approximation, the
body is assumed to be so smooth and slehda. that the tangmencycondition
can be hnposed on the axis rather than Dn the actual sm?face, in this
case in..the.form lim l@r = I%(x)R1 (k). Thus slender-body theory is

r+o
a further approximation within lineariz~edtheory (being, in fact, the
leading term in the asymptotic expansion of_the linearized solution for
small thickness T). Consequently, the slender-body solution obeys the
similarity rules of ltiearized theoryz ‘andthe second-order sl~der-
body solution likewise obeys the secon~-oq~er similaity rules.

—.

—

L

.—
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separately, but only in the combination j3T.
parsneter. Two tisonic or supersonic flaws
family are related if the corresponding Mach

This is the similarity
past bodies of the sane
mmibers are such that the

parameter ~T is the same for both. The nature of the relationship is
found by reintroducing the dependence on psmmeters into equation (%).. .,-
which gives the similarity rules

@(x,r;M,7) ‘-& F(x,13r;pT)

Second-Order Rules

The second-order problem is found to be (ref. 3)

❑ IQ =
{ }

M2 [(~ +1)M2 +2(1 - M2)]@@n + 2&@= + @r2firr

q)+o at infinity

%= T@xRt(x) atr= TR(x)
1

(5)

(6)

Note that the first equation contains not only quadratic terms on the
right-hand side, but also the triple product @r~ whose contribution
is of second order in some cases.

The parsmeter 7 appears only linearly in the combinaticm (7 + 1)
and can accordingly be separated out. Thus the appropriate transformation
is found to be

[

M4

q(x,r) .+ f=(x,p) +M2f2(x,p)+(7 + 1) ~fs(x,P) 1 (7)

Then equating like powers of M2 yields the following set of three
problems for f~,fa,fs in which the parameters M,7,7 appear agafi o~
in the form of the single similarity parameter j3T:

•f~ = o

f=+o at infinity

1

(8a)

f~p = BTFXR’(X) at p= f!TR(x)

—
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Elf2 = &2FxFu + ‘pFxp + ‘p%p P

f=+o at infinity

f=p = O at p = ~Tq(X)

1

D f3 = FXFH

f=+o , at infinity

f~p = o at p = f3TR(x)
‘“” 1

NMM TN 3875
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.

(8b)

(8c)

Then reintroducing the explicit dependence on parameters into the func-
tions fl,f~,fs of eqwtion (7) gives th~ similarity rules for the

.4

second-order increment

q(x,r;M,y,T) =

where the arguments of
the arguments of later

in perturbation potential:

[
1 f~(x,pr;pT) +M=f=()+(y+ 1)p & f~()1 (9)

f= and f3 are the same as those of fl. Hereafter
terms will be emitted in this fashion when they are

●

the s~e as for the leading term. It sh@l_dbe emphasized that, just-as
—

in linearized theory, the subsonic and supersonic rules are quite C@tfict,
although they have the sane form (9). Beeau~e of the different defini-

.

tions of ~, and the resulting + signs in!eqyations (4) and (8b), a super-
sonic flow is not related to a mbsonic flow. Discussion of these results ““-~
is deferred to the general case.

RULES FOR GIZNERAL,BODIES

Sketch (b).- Example of two.
related bodies.

Consider a fami~ of general
threebdimensio.ualbodies, whose mem-
bers axe derived from one another by
a uniform magnification or reduction
of all dimensions normal to the free
streain(sketch (b)). Each member of
such @ family can be characterized,
as before, by sme characteristic
slope, T& It may be emphasized that
T cah be identified with thickness,
cambek, or angle of attack, all of
which vary together for related
bodies.

The preceding -lysis can be
extended in a straightforwardway to
such general bodies, at the expense

b—
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only of typographic complexity. Both cross-stresm tiensions behave in
the way that r did before. Hence the subsonic and superscmic second-
order rules for the velocity potential, corresponding to equations (~)
and (9), are, in Cartesisn coordinates:

+ @(x,y,z;M,7,T) Z F(x,~Y,j3z;BT) +~
[
fl(x,By,Pz;137)+M2f20 +

m ‘X+F p4

(7 + 1) ; fso
1

(lOa)

Differentiation yields the corresponding rules for velocity
components (those for w having the same form as for v):

(1OC)

(The functions appearing here a?e actually related to derivatives of the
functions
To second

Cp =

where the

in equation (lOa), but the connection is of little interest.)
order the pressure coefficient is given by

-#x - (@y’+ @z2) - *X - 2@-CPy+@zCPz)+(@- l)@x2+

M2@x(~2+@z-2)+&2(~2 +@z2)2

terms in the second line may be significant for slender shapes.
Substituting the expressions (10) for-veloci~y components and simplifying ‘
shows that the similitude for pressure coefficient has the same form as
that for the stresmwise velocity increment Au/Um:
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Cp(X,y,Z;M,Y,T) ‘L
$2 [

p(X,~y,~Z;~T) ++ p~(x,~y,~z;PT) +M2P20 +

The
flow are

1(7 + 1) $P30 (lOd)

similarity rules for the perturb~ationstream function in plane
the ssme as those for v/U~ (eq.,(1OC)).

Alternative Fo&m.-

AS With other similarity rules, an Wlmted n~ber of alternative
forms can be produced by multiplying by powers of the stilarity param-
eter. Thus, of the many possible alternatives to the second-order

—

rules (lOd) for pressure coefficient, two of the most useful ae:

(lOf)

In additio~, the first two second-order terms can be manipulated, using
the connection between M2 and B2, to yield additional alternative forms
such as the following, which correspond t,othe tlu?eeforms above:

[

.=

CP s-$ P(x,13y,Pz;13T)++ PI() +5P2’()+(7+1) ~ P3()1

[‘~(x,~y,@;Pd+-SI() +$~djj+(y+1)cp=~ * %()1

%? [=&~(X,~y,~Z;~T) +T4 ~~~() +~z’()+(y +1) $fi~() 1

(log)

(lOh)

(101)

. —

.

—

—
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Force Coefficients

The rules for pressure -ply rules for the lift and drag coefficients.
For exsmple, equation (lOe) leads to

CL(M,7,T)
[

=~L(pT) +~ 21(pT) +M2Z=(~T)+(7 +1) ~ Z3(~T)1
(loj )

CD(M,7,T) =&(~T) +;

[
dI(@T) +M2d2(~T)+(7 +1) &(~T) 1

(lOk)

if the coefficients are referred to some plan-form area. If some cross-
sectional area is used, each term is reduced by one power of T. Various

alternative forms are again useful. In the case of lift coefficient,
one will ordinarily choose to identify T with the angle of attack.

. RUGES FOR QUASI-CYLINDRICAL BODIES

* A special class of objects must be distinguished, which will be
termed quasi-cylindricalbodies. These are shapes that lie everywhere so
close to some cylinder (not necessarily circular) parallel to the free
stresm that to a first approximation the condition of tangent flow can be
imposed at the cylinder rather than on the actual body surface. Likewise,
in second-order theory the tangency condition can be transferred to the
cylinder by Taylor series expansion. The simplest example is an airfoil
whose thichess, csznber,and angle of attack are so small that the tan-
gency condition can be transferred from the airfoil surface to a mean
plane parallelto the stresm (sketch (c)). Another exarrpleis an open-
nosed body Qf revolution whose radius varies only slightly. Others are
biplanes, cruciform wings, any of
these in an open or closed wind

D

———— ——

tunnel, in combination with one ~
‘\
I

another, etc.
——— ——- /’

A quasi-cylindricalbody can be
regarded as consisting of a skeleton
upon which is superimposed a small /// J // I/

slope distribution. The skeleton is
simply the projection of the body
onto the basic cylinder. For ae~

* example, the skeleton of the quasi-
cylindrical body of revolution is
the circular tube shown dashed in Sketch (c).- Exsmples of quasi-
sketch (c). cylindrical bodies.
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The special place of quasi-cylindric&lbodies in similarity theory
srises from the fact that the skeleton anllthe slope distribution can be

.--—— —---- -—

~
I
1
I

-------- --—- !/
Sketch (d).- Example of two

related.quasi-cylindrical
bodies.

varieflindependently. This etira .
freedbm is important. For exsmple,
it leads to a useful transonic simi-
larity tile for quasi-cylindrical
bodiep whereas none exists for general
shapeS. -It is convenient always to
leave:stresmwise dimensions unaltered.
Hence~,wconsider fs.miliesof quasi-
cylindrical bodies that are derived

—

from bne another by,a lateral com-
pression or expansion of the skele-
ton, and_.aquite independent magnifi-
cation or reduction of all suxface
sloye~. Two members of such a family
are s@wn in sketch (d).

Distortions of the skeleton will be measured by some characteristic
“aspect ratio” A. It is important to not? t~t the term “aspect ratio”
is used here in a very general sense to mearlany typical ratiO Of gross

.-

cross stream to stre-se dhnensions. Fbr e“ksmple,in the last shape
in sketch (c), the ratio of tind-tunnel height to airfoil chord is an

*a-

ppropriate characteristic aspect ratio. ~Changes of slope are measured,
as before, by some.characteristic slope T. F

The preceding similarity rules can be simplified for quasi-cylindrical
bodies by using the facts that first-order perturbation quantities are
directly proportional to T, and second-brd-erterms to 72. The shnpli-
fication can be carried out by first imagining the quasi-cylindricalbody
to be restricted to be a general body, which means that both @ ~d pT
must be the same for similarity. Then copsider the preceding rules in the
particular alternative forms in which T ~ap~ears explicitly outside the
first-order term and T2 outside the secbnd-order terms. For the
pressure coefficient, this form is that O? equation (lOe):

So far the functions ~,P1,F2,33 have bepn supposed to depend para-
metricall.y upon both @ and PT. However,,the first- and second-order
terms can be proportional to T and 72, respectively, only if the supposed
dependence upon 13T is nonexistent. Henbe,’ the similarity psmmeter
is PA alone, and the rules for presme, arg (~ming b~s from the

—
.

functional symbols):

~This is by no means true for general bodies; as noted previously,
the first-order pressure coefficient on a~~ooth slender pointed body of

v

revolution varies as -ra2nT for small +.
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(7+1) &l. ()]

The corresponding rules for the potential
if desired, be written down by inspection

end velocity components
from equations (10).

(ha)

can,

toWith & = P2 * PI (fiere~ as before> the UPPer si~ applies
subsonic and the lower to supersonic flow), these rules can be rewa?itten
as

and this iS
of the flat

cp=;po+T
[

@ A

2 PI(} +—~2P20+(Y +1) $ P30 1

the result that Fenain and
dismond cone tn supersonic

(llb)

Germain found in their treatment
flow (ref. ~).

Connection With Hayesl Rule

For plane flow past a single body, Hayes has discovered a remarkable
rule for the second-order surface pres&re- (ref. 7). It implies that,
on the surface, the functions in equation (ha) are such that p2 = O
and pl = lp~. Hence,

%s=;P(x)++ (7+1.) M4+4(I-M2) p,(x)

~(1 -M?=
(12)

In supersonic flow this is simply Busemamnts well-lamwn second-order
solution, P being twice the local slope of the surface and pl twice
its square; in subsonic flow P smdpl are more complicated (ref. 8).
This rule implies a corresponding, but more complicated, rule for
surface velocity (ref. 8).

In addition to the restriction to single bodies and plane flow,
these rules sre not similarity rules in the sense of the preceding results,
because they apply only at the surface rather than throughout the field.
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The rules
being confined

Broderick

IzLxAMems‘ -

will be illustrated by two’simple exsmples, attention
to the surface pressure co~ffi.cient.

Slender Circular Cone in Supersonic F1OW

has derived the
circular cone at zero angle in
pressure coefficient on a cone

NACATN 3875

.

second-ord&? slender-body solution for a
a supersonic stream (ref. 2). The surface
of slope T is

1(7+1)5

This has the form of equation (lOi) with ~

~=22n~-1
~T

51
13

~+—
‘3 Zn2&5Zn~T 4 .

Wavy Wall in Closed SubsofiicWind Tunnel

Consider the sinusoidal wall ‘- /-\ H-N

Y = T Sin x at a diSt~ce h frOm \ 0 \ / \
\_/

a flat wall (or a distance
\_/

2h frmn
its mirror.image) as indicated in
sketch (e). Subsonic flow between ~~
the walls at a mean Mach number M ) ) # i I 1 / ) i t i I / )

can be readily calculated to second
order by separation.of variables.
The resulting pressure coefficient
on the surface of the wavy wall is

~x

Sketch (e).- Wavy wall in
wind tunnel.

*

.—

—

.

●

.—
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2T 1+ e-2~h
c%= ‘~ ~ ~-@h ‘h x+T2

(y+ 1)M4+ 4(1-M2) 1+ ke-2Ph+e-4ph

4(1 - M2]2 (1 - e-z~h) 2

The relevant aspect ratio is the height h (which is
of the height-chord ratio, because of the choice of scale
wall). Thus the result is seen to have the shnilitude of
As the tunnel height increases indefinitely, the last two
and the remainder-follows the
of a single plsne body.

REDUCTION
KEllRIY

b linearized theory, an
G6thert*s rule, which reduces
incompressible flow (ref. 1).
pressible flow is that past a

stiilitude of-equation (12)

OF SUBSONIC PROBLEM TO
INCOMPRESSIBLE FLOW

Cos 2x

really

Cos 2x-

(14) ‘

a multiple
for the wavy
equation (Us).
terms disappear,
for the surface

5mportant application of the similitude is
any subsonic flow problem to a related
As the rule is usually stated, the incom-
thinner affinely related body. However,

the incompressible solution for one meniberof an affinely related fsmil.y
of bodies determines that for all other members, so that the subsonic
flow may, if desired, be related to the ssme body rather than a thinner
one, and that viewpoint will be adopted here as being the shrplest.

Ih second-order theory, the explicit appearance of terms in M2
and (7 + I)M4 in eqpations (10) means that reduction to sm incompressible
probkn is impossible (except for the special case of the surface of a
single plane body, where eq..(12) applies). The second-order problan
can, however, be reduced to a nearly incompressible flow.

Flows at low Mach nuuiberscm be calculatedly the Jsnzen-Rayleigh
method, which involves iterating on the incompressible solution to obtain
a power series in M2. Thus the velocity potential.is approximatedby

~ @(x,Y,z;M,Y,T) = OO(X,Y,Z;T) +M2151(X,Y,Z; T) +
m

(7+1) M4020+M %30+.” . . (Isa)



14 NACA TN 3875

The two terms in M4 are ordinarily considered together, but for preient
Pvoses it is ess~tid to sePuate them’tecause only 02 is required.
This is fortunate because 42 can be calculated almost as easily as Ql,
whereas the determination of 09 is much,more difficult.

The small-disturbanceand Janzen-Rayleigh series represent two dif-
ferent asymptotic expansions of the actual solution.. They are belleved
to complement each other, so that an expansion of the Janzen-Rayleigh
solution for small thickness must be iden%ical tith the expansion of the
small-disturbance solution in powers of ti2,as has been verified in all.
worked examples. This fact permits the sr$all.-distwbancesolution to be

-.

recovered from the Janzen-Rayleigh series? The converse is not true,
however, except for bodies without stagnaljionpoints, because the small-
disturbance expansion

Frocedure

Suppose that the

is Dot uniformly valid near a stagnation point.

for Recovering Secorid-OrderSolution

Janzen-Rayleigh ser~es,of equation (lba) is known
up to the term in (7 + I)M4. T%en expanding each-term fo~l~ for small
thickness T, and retaining only second-o~de~ quantities, gives a double
series of the form

#@(x>Y>z;MJY,T) = [x+ *ol(x,Y,z;T) ,+@@020 + ● ● .1 +
m

M2[T%110 + T%~20 + . . .] +

(7+~)M41*2zo:+ . . .1 +O(M4,T8) (l~b)

Here On= and 0= are, respectively, the first- and second-order com-
ponents of .On. Now also, according to the similarity rule of equa-
tion (lOa) in the alternative form corresphndltigto equation (lOf), the
second-order small-disturbancesolution has the form

[
#@(x,Y,z;M,7,T) = X+ ~G(x,Py,~z;~”T) + ~ g=() +M2&() +
m

(7 + 1) $ i%()] + 0(+) (16a)

and this can be expanded fully in powers of M2 by using Taylor series
expansions such as ;...

.

.-

-“

.

—

—

—

.

k
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&dPY) = dYl - ; M~g’(y) + 0(M4)

to give

# UJ(x,y,z;M,y,T)
{

=x +72 G(x,Y~z;T)
Cv [

-$ M2YGY() +

{ [
1 ~2 Yglyo + ~glzT4 glo - ~ () +

}
M2g20+(y + l)M4g30 +O(@,M4)

1}ZGZ() + TGT() +

1‘glT()+

(16b)

●

-—

If the two double series expansions (l~b) and (16b) are identical, like
terms csn be equated to give —

G(x,Y,z;T) = @ol(x,y,z;T)

gl(x,y,z;T) = @02(x,y,z;T)

[

%(X,Y,Z;T) = @~(x,Y,z;T) ++ @ozyo + Z@o=zo + ~oa~()1
ga(x,Y,z;T) = !52~(X,y,Z;T)

Then substituting these expressions into equation (16a) expresses the
second-order potential in terms of the Janzen-Raylei@ solution as

{
#@(x,Y>z;M>7,@ = x +*oI(x>~Y@A;fl~) + ‘@ @o&,py,@;@r) +
CQ

+ 1) M4
--@02=()

}
(17)

rne~s (b/b)Oo2(XjYjZ;T) evaluated &t X = X,

~T, for example. Note t~t @ll is not requiredo
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Application

Sketch (f).- Parabola at zero
angle of attack.

●

to P~abola

.
As an example, consider plsne

subsohic flow at zero angle of attack
past the”parabola described by

Y = TA (sketch (f)). The Janzen-
Rayleigh soluticm including terms
in (7 + l)@ has been calculated -.
by xi (ref. 9). Although the —
velocity potential is complicated,
it simplifies when expanded in powers
Of T tO

[

7+~M4,@k ‘4
32

+~n.L!LE 1+...(E2+f)2 (18a)
~2

Here ~,7 are parabolic coordinates related to the Cartesiaa coordinates _ G
.

by

[
(x. ; T2) + iy1=IE+i?-J2

so that to second order

262=-+X

2q’=--x
1

(rob)

In this case the terms involved in equations.(1’jb)and (17) are

.

.
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.

.

(18c)

This example illustrates the fact that for planar systems these terms
are not of order unity in T. Them according to equation (17) the
second-order small-disturbance solution is

where

2g2 =4 x2+@y2+x

2fi2=4X2 + 9%2 - x
1

(lga)

(lgb)

This result is of interest because it apparently cannot be found directly.
Plane small-disturbance flows can be calculated easily if one adopts the
thin-airfoil approximation of transferring the boundary conditions to the
line y = O by Taylor series expansion, but that appro-tion fails near
round noses in the second approximation and, as a consequence, divergent
integrals arise (ref. 8). Instead, one can try to treat the round nose
more carefully using conformal mapping (cf. ref. 11, pp. 361-367), but
the result is found to be indeterminate to the extent of a multiple of

—

Zn(~2 +fi2). This is the potential of a point source at the origin,
which is sn ei-gensolution,the proper multiple of which (appesring in
eq. (19a)) is not determined by the suggested method.

The secopd-order increment in equation (19a) is seen to include
terms in T22n T, whose function is to render the argument of the
Iogaritti dimensionless. Huwever, these terms sre simply constants,
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so that no logarithms of thickness appe@ in the actual flow quantities
.

such as velocity and pressure. As remarked-in the introduction, logs-.
ritbmic terms in thickness arise in the actual flow disturbsmces only *–

in the fourth approximation.

The second-order small-disturbmce qolution for the stream function
can in the same way be extracted.fromIn&i’s Janzen-Rayleigh solution,
and the result is found to agree with that calculated directly by Kaplan
(ref. 10) using conformd mapping. It c+ntains no terms in in T. (The
direct approach succeeds for the stream ~ction, although it fails for
the velocity potential, because the tang~cy condition iS imposed m the ““- “-

mass flux, which is affected by the abov~ eigensolution.) Then using the
connections between the stream function tid-telocity potential, one can

.—

verify the correctness Of equations (19)s _.

CONCLUDING REMARKS

Utility of the Rules
—

The second-order rules are scarcely’suited for correlating e~ertien-
tal data, since tests on four related bodies wouldbe needed in order to

—

isolate the four functions involved. That they are, however, usefl h
theoretical analyses has already been po~ted out by Fenain and C&main —

Sketch (g).- Flat dismond cone.

in the special case of supersonic flow If
pastflat wings (ref. 5). FreviwS
investigators had calculated (erro-
nems~y, as it turns out) the second-
order solution for the flat diamond
cone:shown in sketch (g), an& carried
out numerical computations for.three
diffbreti Mach numbers and four values
of the parsmeter p tan 1 (reported
in ref. 11). Because the latter is
the similarity parsmeter w of equa- .
tionk (Il.),failure to take ~=tage
of the stiilitude resulted in three-
fold;unhecessa@ duplication of .
comportinglabor.

.-

The reduction to Dearly incmnpressi~le flow assumes @ortsnce for
bodies tith stagnation points. The mall-@isturbance asswnption is

—

tiolated, and, as was noted in the examp~e of the parabola, the second-
.

order solution consequently cannot be fo@d. directly. For bodies of
revolutim the difficulties appear to be;even more severe.. In such .=

cases it is convenient to calculate the @nk_en-Rayleigh solution> and
from it extract the true second-order soluti.m by the procedure outlined
above. . . =.-=
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Further Extensions

The
order in

similarity rules
the same fashion

can readily be extended to third and higher
(except for complications in supersonic flow

because of the ultimate appearance of significant vorticity engendered
by curved shockwaves). The similarity parameter remains unchanged;
the complexity arising in a proliferation of functions multiplied by

powers of (7 + l)nl!?n~-~. Likewise, the small-disturbance solution to
any order caa be recovered from the nearly incompressible solution
provided by an appropriate number of terms of the Janzen-Rayleigh
solution. -.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Fieid, Calif., Oct. 18, 1956
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